A Hybrid Meta-Heuristic Algorithm based on Imperialist Competition Algorithm
نویسندگان
چکیده مقاله:
The human has always been to find the best in all things. This Perfectionism has led to the creation of optimization methods. The goal of optimization is to determine the variables and find the best acceptable answer Due to the limitations of the problem, So that the objective function is minimum or maximum. One of the ways inaccurate optimization is meta-heuristics so that Inspired by nature, usually are looking for the optimal solution. in recent years, much effort has been done to improve or create metaheuristic algorithms. One of the ways to make improvements in meta-heuristic methods is using of combination. In this paper, a hybrid optimization algorithm based on imperialist competitive algorithm is presented. The used ideas are: assimilation operation with a variable parameter and the war function that is based on mathematical model of war in the real world. These changes led to increase the speed find the global optimum and reduce the search steps is in contrast with other metaheuristic. So that the evaluations done more than 80% of the test cases, in comparison to Imperialist Competitive Algorithm, Social Based Algorithm , Cuckoo Optimization Algorithm and Genetic Algorithm, the proposed algorithm was superior.
منابع مشابه
A hybrid meta-heuristic algorithm based on ABC and Firefly algorithms
Abstract— In this paper we have tried to develop an altered version of the artificial bee colony algorithm which is inspired from and combined with the meta-heuristic algorithm of firefly. In this method, we have tried to change the main equation of searching within the original ABC algorithm. On this basis, a new combined equation was used for steps of employed bees and onlooker bees. For this...
متن کاملHybrid Meta-heuristic Algorithm for Task Assignment Problem
Task assignment problem (TAP) involves assigning a number of tasks to a number of processors in distributed computing systems and its objective is to minimize the sum of the total execution and communication costs, subject to all of the resource constraints. TAP is a combinatorial optimization problem and NP-complete. This paper proposes a hybrid meta-heuristic algorithm for solving TAP in a ...
متن کاملa hybrid meta-heuristic algorithm based on abc and firefly algorithms
abstract— in this paper we have tried to develop an altered version of the artificial bee colony algorithm which is inspired from and combined with the meta-heuristic algorithm of firefly. in this method, we have tried to change the main equation of searching within the original abc algorithm. on this basis, a new combined equation was used for steps of employed bees and onlooker bees. for this...
متن کاملDesigning a Meta-Heuristic Algorithm Based on a Simple Seeking Logic
Nowadays, in majority of academic contexts, it has been tried to consider the highest possible level of similarities to the real world. Hence, most of the problems have complicated structures. Traditional methods for solving almost all of the mathematical and optimization problems are inefficient. As a result, meta-heuristic algorithms have been employed increasingly during recent years. In thi...
متن کاملA Hybrid Evolutionary Imperialist Competitive Algorithm (HEICA)
This paper proposes a new approach by combining the Evolutionary Algorithm and Imperialist Competitive Algorithm. This approach tries to capture several people involved in community development characteristic. People live in different type of communities: Monarchy, Republic and Autocracy. People dominion is different in each community. Research work has been undertaken to deal with curse of dim...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 1
صفحات 59- 67
تاریخ انتشار 2018-03-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023